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Abstract

In this paper, we have extended the granular mechanics approach to derive an elasto-plastic stress–strain relation-
ship. The deformation of a representative volume of the material is generated by mobilizing particle contacts in all ori-
entations. Thus, the stress–strain relationship can be derived as an average of the mobilization behavior of these local
contact planes. The local behavior is assumed to follow a Hertz–Mindlin�s elastic law and a Mohr–Coulomb�s plastic
law. Essential features such as continuous displacement field, inter-particle stiffness, and fabric tensor are discussed. The
predictions of the derived stress–strain model are compared to experimental results for sand under both drained and
undrained triaxial loading conditions. The comparisons demonstrate the ability of this model to reproduce accurately
the overall mechanical behavior of granular media and to account for the influence of key parameters such as void ratio
and mean stress. A part of this paper is devoted to the study of anisotropic specimens loaded in different directions,
which shows the model capability of considering the influence of inherent anisotropy on the stress–strain response
under a drained triaxial loading condition.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Microstructural models for elastic stress–strain behavior of granular material can be derived from
properties of inter-particle contacts. Considering the mean behavior of all contacts in each orientation,
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the overall stress strain behavior can be obtained as an average of the contact behavior for all orientations.
Models based on this approach can be found in the work by Jenkins (1988), Wallton (1987), Rothenburg
and Selvadurai (1981), Chang (1988), Emeriault and Cambou (1996), Liao et al. (2000), Kruyt and Roth-
enburg (2002), among others.

As for microstructural models for more complex elasto-plastic behavior of granular material, the ap-
proach is not as straightforward as that used in elastic models. We can generally classify them into two cat-
egories. The first category is plasticity models with fabric tensor, in which the material parameters of
plasticity are defined at the macro (particle assembly) level. A fabric tensor is utilized to represent the
anisotropy of packing structure (see Satake, 1997) and material parameters are made to be functions of
the fabric tensor so that the effects of packing structure for granular materials are included. Often, a rule
is hypothesized on the evolution of fabric tensors with stress. Work along this line can be found by Oda
(1993), Emeriault and Cambou (1996), Wan and Guo (2001), Nemat-Nasser and Zhang (2002), Li and
Dafalias (2002), etc. The second category is microstructural plasticity model, in which the material para-
meter is defined at the micro (inter-particle) level. The basic idea is to view the packing as represented
by a set of micro-systems. The inelastic behavior of each micro-system is characterized and the overall
stress–strain relationship of the packing is obtained from an average of the behaviors of micro-systems.
If the micro-systems are regarded as inter-particle planes (or mobilized planes) in the packing, then the ap-
proach is similar to that used in modeling elastic behavior. Models based on inter-particle contact planes
can be found in Jenkins and Strack (1993), Matsuoka and Takeda (1980), Chang et al. (1989), etc. An alter-
native way is to view the micro-systems as particle-groups of different configurations. Models developed
along this line can be found in Chang et al. (1992a,b), and more recently in Suiker and Chang (2004).

In order to characterize the packing structure, the microstructural plasticity model requires a mathemat-
ical or numerical description of the micro-systems, which is not readily available. However, for the cases of
treating micro-systems as contact planes or mobilized planes, the approach of estimating the overall behav-
ior by orientational planes can be linked to G.I. Taylor�s concept, developed long ago in the slip theory of
plasticity for polycrystalline materials by Batdorf and Budianski (1949). These ideas were applied by Pande
and Sharma (1982) to rocks and soils in what they called the overlay model, and to concrete by Bazant et al.
(1995) in the so-called micro-plane model.

Along these lines, we develop a new stress–strain model considering inter-particle forces and displace-
ments. We incorporate into the model a more recently developed micro–macro links between strain and
inter-particle displacements for granular materials (Liao et al., 1997, 2000). The model performance is then
evaluated by comparing the predicted and measured triaxial loading results for sand of different void ratios
and under different confining stress, in both drained and undrained conditions. Specimens with anisotropy
are also studied to demonstrate the advantages of this model.
2. Stress–strain model

In this model, we envision a granular material as a collection of particles. The deformation of a repre-
sentative volume of the material is generated by the mobilization of contact particles in all orientations.
Thus, the stress–strain relationship can be derived as an average of the mobilization behavior of local con-
tact planes in all orientations. For a contact plane in the ath orientation, the local forces f a

i and the local
movements dai can be denoted as follows: f a

i ¼ ff a
n ; f

a
s ; f

a
t g and dai ¼ fdan; d

a
s ; d

a
t g, where the subscripts n, s,

and t represent the components in the three directions of the local coordinate system. The direction normal
to the plane is denoted as n; the other two orthogonal directions, s and t, are tangential to the plane.

The forces and movements at contact planes of all orientations are suitably superimposed to obtain the
macroscopic stress strain tensors. The macroscopic stiffness tensor is obtained on the condition that the rate
of energy dissipation expressed in terms of the macro stress and strain must be equivalent to that expressed
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in terms of micro-forces and movements. In such formulation, it has usually been assumed that the micro-
structure is statically constrained, which means that the forces on each contact plane are assumed equal to
the resolve components of the macroscopic stress tensor. Another equally simple possibility is to assume a
kinematically constrained microstructure, in which the movements, rather than the forces on a contact
plane, are the resolved components of the macroscopic strain tensor.

The kinematically constrained models are more popularly used in concrete models. The overriding rea-
son for using this approach is that, in case of strain softening, it is easier to construct a stable model using a
kinematic rather than a static constraint. However, the kinematic constraint obviously gives a more restric-
tive deformation pattern, thus provides a stiffer result, especially when granular materials are subjected to
high deviatoric stresses (Chang and Misra, 1990). Further discussion on this issue can be found in the work
by Chang and Gao (1996), Kruyt and Rothenburg (2002) and Kruyt (2003).

2.1. Inter-particle behavior

2.1.1. Elastic part

The orientation of a contact plane between two particles is defined by the vector perpendicular to this
plane. On each contact plane, an auxiliary local coordinate can be established as shown in Fig. 1. The con-
tact stiffness of a contact plane includes normal stiffness, kan, and shear stiffness, kar . The elastic stiffness ten-
sor is defined by
f a
i ¼ kaeij d

ae
j ð1Þ
which can be related to the contact normal and shear stiffness
kaeij ¼ kann
a
i n

a
j þ kar ðsai saj þ tai t

a
j Þ ð2Þ
where n, s, t are three orthogonal unit vectors that form the local coordinate system. The vector n is
outward normal to the contact plane. Vectors s and t are on the contact plane.

The value of the stiffness for two elastic spheres can be estimated from Hertz–Mindlin�s formulation
(1969). For sand grains, a revised form was adopted (Chang et al., 1989), given by
kn ¼ kn0
fn

Ggl
2

 !n

; kt ¼ kt0
fn

Ggl
2

 !n

ð3Þ
Fig. 1. Local coordinate at inter-particle contact.



C.S. Chang, P.-Y. Hicher / International Journal of Solids and Structures 42 (2005) 4258–4277 4261
where Gg is the elastic modulus for the grains, fn is the contact force in normal direction. l is the branch
length between the two particles. kn0, kr0 and n are material constants. For two spherical particles, the
branch length is same as particle size l = d. Let n = 1/3, and
kn0 ¼ Gg
d
2

ffiffiffiffiffi
12

p

1� mg

 !2=3

ð4Þ
Eq. (3) is equivalent to the Hertz–Mindlin�s contact formulation.

2.1.2. Plastic part
The elastic sliding behavior between two particles does not have a coupling effect (i.e., there is no shear-

induced normal movements). However, the plastic sliding often occurs along the tangential direction of the
contact plane with an upward or downward movement, thus the shear dilation/contraction takes place. The
stress-dilatancy is a well-known phenomenon in sand (see discussions in the work by Taylor, 1948; Rowe,
1962; Goddard and Bashir, 1990, etc.), and should be correctly modeled. The dilatancy effect can be de-
scribed by
ddpn
dDp ¼

T
fn

� tan/0 ð5Þ
where /0 is a material constant which, in most cases, can be considered equal to the internal friction angle
/l. This equation can be derived by equating the dissipation work due to plastic movements to the friction
loss of contact planes in the same orientation. Note that the shear force T and the rate of plastic sliding dDp

can be defined as
T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
s þ f 2

t

q
and dDp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðddps Þ

2 þ ðddpt Þ
2

q
ð6Þ
The yield function is assumed to be of Mohr–Coulomb type,
F ðfi; jÞ ¼ T � fnjðDpÞ ¼ 0 ð7Þ

where j(Dp) is an isotropic hardening/softening parameter. When F>0, it indicates loading, otherwise
unloading. The hardening function is defined by a hyperbolic curve in j � Dp plane, which involves two
material constants: /p and kp0.
j ¼
kp0 tan/pD

p

j fn j tan/p þ kp0D
p ð8Þ
The value of j asymptotically approaches tan/p. The initial slope of the hyperbolic curve is kp0. On the
yield surface, under a loading condition, the shear plastic flow is determined by a normality rule applied to
the yield function. However, the plastic flow in the direction normal to the contact plane is governed by the
stress-dilatancy equation in Eq. (5). Thus the flow rule is non-associated.

2.1.3. Interlocking influence

One of the important elements to consider in granular modeling is the critical state concept. Under crit-
ical state, the granular material will remain at a constant volume while it is subjected to a continuous dis-
tortion. The void ratio corresponding to this state is ec.

The critical void ratio ec is a function of the mean stress. The relationship has traditionally be written as
follows:
ec ¼ C� k logðp0Þ or ec ¼ eref � k log
p0

pref

� �
ð9Þ
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and are two material constants and p 0 is the mean stress of the packing, and (eref, pref) is a reference point on
the critical state line.

The internal friction angle /l is a constant for the material. However, the peak friction angle, /p, on a
contact plane is dependent on the degree of interlocking by neighboring particles, which can be related to
the state of packing void ratio e by
tan/p ¼
ec
e

� �m
tan/l ð10Þ
where m is a material constant (Biarez and Hicher, 1994).
For dense packing, the peak frictional angle /p is greater than /l. When the packing structure dilates,

the degree of interlocking and the peak frictional angle are reduced, which results in a strain-softening
phenomenon.
2.1.4. Elasto-plastic relationship

With the elements discussed above, the final incremental stress–strain relations of the material can be
derived that includes both elastic and plastic behavior, given by
_f
a

i ¼ kapij _d
a

j ð11Þ
Detailed expression of the elasto-plastic stiffness tensor is given in Appendix A.
2.2. Stress–strain relationship

2.2.1. Macro–micro relationship

The stress–strain relationship for an assembly can be determined from integrating the behavior of inter-
particle contacts in all orientations. During the integration process, a relationship is required to link the
macro and micro-variables. Using the static hypotheses proposed by Liao et al. (1997), we obtain the rela-
tion between the macro strain and inter-particle displacement (here, we do not consider the finite strain
condition)
_uj;i ¼ A�1
ik

XN
a¼1

_d
a

j l
a
k ð12Þ
where _dj is the relative displacement between two contact particles and the branch vector lk is the vector
joining the centers of two contact particles. It is noted that contact particles include both direct contact
and indirect contact of neighboring particles associate with a Voronoi polyhedron as discussed by Cambou
et al. (2000). For convenience, we let N be the total number of contact orientations. The variables _d

a

j and lak
are defined respectively as the averaged values of _dj and lk for all contacts belong to the ath orientation. The
fabric tensor in Eq. (12) is defined as
Aik ¼
XN
a¼1

lai l
a
k ð13Þ
Using the principle of energy balance and using Eq. (14), the mean force on the contact plane of each
orientation are
_f
a

j ¼ _rijA
�1
ik l

a
kV ð14Þ
In Eq. (14), the stress increment _rij can be obtained by the contact forces and branch vectors for contacts
in all orientations (Christofferson et al., 1981; Rothenburg and Selvadurai, 1981)
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_rij ¼
1

V

XN
a¼1

_f
a

j l
a
i ð15Þ
Applying the defined contact force in Eqs. (14) and (15) is unconditionally satisfied.

2.2.2. Computation scheme

The problem is defined by the following:
Initially, we know the global variables (rij and eij) for the assembly and the local variables (f a

j and daj ) for
each contact orientation. For a given loading increment, which can be stress control, strain control or
mixed mode, out of the 12 variables (Drij and Deij), six of them are unknown. The objective is to determine
all global variables (rij and eij) and local variables (f a

j and daj ) at the end of load increment. For a system
with N inter-particle orientations, the number of unknown is 3N for f a

j and 3N for daj . The total number of
unknown is 3N + 3N + 6.

The following constraints must be satisfied:

(1) The local constitutive equation, i.e. Eq. (11). Since there are three equations for each contact plane
orientation, the total number of equations is 3N, N being the total number of inter-particle
orientations.

(2) Static hypothesis between global stress and local forces, i.e. Eq. (14): the number of equations is 3N.
(3) Strain definition between global strain and local displacement, i.e. Eq. (12). The number of equations is

six (strain is symmetric).

The total number of unknowns is the same as the total number of equations. Therefore, the solution can
be determined.

Using Eqs. (11), (12), and (14), the following relationship between stress and strain can be obtained:
_ui;j ¼ Cijmp _rmp; where Cijmp ¼ A�1
ik A

�1
mnV

XN
a¼1

kepjp
� ��1

lakl
a
n ð16Þ
The summation in Eq. (16) can be replaced by an integral over orientations. The integral can lead to a
closed-form solution for the elastic modulus of randomly packed equal-size particles (Chang et al., 1995).
However, in the elastic plastic behavior, due to the non-linearity nature of the local constitutive equation, a
numerical calculation with iterative process is necessary to carry out the summation in Eq. (16). In order to
facilitate the numerical calculation, the orientations are selected to coincide with the locations of Gauss
integration points in a spherical coordinate. Summation over these orientations with the Gauss weighting
factor for each orientation is equivalent to determining the integral over orientations. We found that the
results were more accurate by using a set of fully symmetric integration points. From a study of the per-
formance of using different numbers of orientations, we found N P 74 to be adequate.

For a strain-controlled test, Eq. (16) is not useful especially at the after-peak range of strain-softening. In
this case, a method of ‘‘elastic predictor–plastic corrector’’ was adopted to obtain the solution. For a
mix-mode loading condition, additional process of distributing the unbalance stresses was also needed.
The detailed procedure is not included here.

2.3. Summary of parameters

One can summarize the material parameters as:

• Normalized contact number per unit volume: Nl3/V
• mean particle size, d
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• Inter-particle elastic constants: kn0, kt0 and n;
• Inter-particle friction angle: /l and m;
• Inter-particle hardening rule: kp0 and /0;
• Critical state for the packing: k and C or eref and pref.

Besides critical state parameters, all other parameters are for inter-particles. Standard values for kp0 and
/0 are the following: kp0 = kn and /0 = /l and a typical ratio kt0/kn0 = 0.5 can be generally assumed.
Therefore, only six parameters have to be derived from experimental results and they can all be determined
from the stress–strain curves obtained from drained compression triaxial tests.

Regarding the effect of the particle size, Eq. (4) shows that the inter-particle stiffness kn0 is influenced by
the mean particle size. Since in this model, the tangential stiffness kt0 and the plastic stiffness kp0 are directly
related to kn0, they are also particle size dependent. Considering an assembly of particles under an exter-
nally applied stress, according to Eqs. (3) and (4) and using the expression of contact force in terms of exter-
nal stress, the inter-particle stiffness is proportional to the mean particle size (see Liao et al., 2000):
kn1G1�n
g d

Nl3

V

� ��n

rn ð17Þ
Although the magnitude of the inter-particle stiffness is dependent on the particle size, the elastic shear
modulus of a packing is not particle size dependent. This can be derived by the fact that the shear modulus
of a packing is proportional to kn/d, thus it leads to (Liao et al., 2000):
G1G1�n
g ðrÞn Nl3

V

� �1�n

ð18Þ
Note that the dimensionless density factor Nl3/V is a function of the void ratio only. Thus, the shear
modulus of the packing is not particle size dependent.
3. Results of numerical simulation

3.1. Drained triaxial tests

A series of drained triaxial tests on coarse Hostun sand undertaken by Bouvard (1982) have been re-
ported and analyzed by Biarez and Hicher (1994). The tests were performed at different confining pressures
on samples prepared at different initial void ratios. Typical results are presented in Fig. 2, which shows the
triaxial testing results for both dense and loose specimens made of Hostun sand. The stress strain curves are
plotted for three different confining stresses in Fig. 2a. The void ratio change with respect to strain is plotted
in Fig. 2b.

One can see the combined influence of the initial void ratio and of the mean effective stress on the stress–
strain curves and the volumetric change. The stress–strain curve has a peak corresponding to the dilatancy
of the sample, which increases with its initial relative density. For dilatant materials, the deviatoric stress
reduces after peak and towards a constant state of stress for a constant void ratio corresponding to the crit-
ical state. In practice, it is difficult to reach this state because of strain localization, especially in dense mate-
rials. It is possible however to limit the effect of the localization by reducing the slenderness of the specimen
and by taking measures to minimize the friction between the rigid end platens and the specimen. This was
done in the tests presented here, which allowed the strain localization to delay at large deformations. The
critical state could therefore be determined with sufficient accuracy (Biarez and Hicher, 1994).
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Fig. 2. Experimental results: (a) stress vs. strain curves, and (b) void ratio vs. strain curves (Bouvard, 1982).
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The model needs a small number of input parameters such as mean particle size, particle stiffness, inter-
particle friction, initial porosity tensor, and initial degree of interlocking. The model performance is dem-
onstrated by comparing the predicted and measured macro behavior.

The mean size of the particle for Hostun sand is d = 1.3mm. The inter-particle elastic constant kn0 is
assumed 61000N/mm. The normalized contact number per volume Nl3/V can be obtained by matching
the predicted and experimentally measured elastic modulus for specimens with different void ratios. The
calculated relationship of Nl3/V versus void ratio for Huston sand is shown in Fig. 3. The relationship for
regular packing of equal sized spheres is also plotted in Fig. 3 for comparison. The evolution of Nl3/V due
to new contact generation with neighbor particles was not considered.

The value of kt0/kn0 is commonly about 0.4, corresponding to a Poisson�s ratio for Hostun sand = 0.2
and the exponent n = 0.5 (Biarez and Hicher, 1994). From results in Fig. 2, we were able to derive the val-
ues of the two parameters corresponding to the position of the critical state in the e–p 0 plane: k = 0.16 and
pref = 0.1MPa for eref = emax = 0.81. The friction angle /l was also determined from the stress state corre-
sponding to the critical state: /l = 33�. The equation governing the dilatancy rate requires the determina-
tion of the parameter /0. This parameter represents the concept of ‘‘phase transformation’’ as defined by
Void Ratio e
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
l3 /V
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8 packing of spheres

Hostun sand

Fig. 3. Inter-particle contact per unit volume vs. void ratio.
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Ishihara and Towhata (1983) or ‘‘characteristic state’’ as defined by Luong (1980). A value of /0 = /l was
retained in accordance with the fact that, for contractant samples, the critical state was reached for the
maximum value of the deviatoric stress, i.e. the sample was contractant all the way to the critical state.

The peak friction angle is not an intrinsic parameter, but varies with the void ratio according to Eq. (10).
A value of m = 0.6 was determined from the test results. The values of kp0 are directly connected to the
elastic properties by considering the relation: kp0 = akn. Here we simply considered that kp0 = kn.

The set of parameters for coarse Hostun sand is presented in Table 1.
The numerical simulations are presented in Fig. 4. A reasonable simulation of the behavior of coarse

Hostun sand at various mean effective stresses and various initial void ratios can be obtained with a single
set of model parameters, capturing both the contractive and dilative behavior of the sand as well as the
influence of this contractant or dilatant behavior on the stress–strain curves and on the maximum strength.
For large deformations, the curves corresponding to the same confining stress and different initial void ra-
tios converge towards an identical stress state and void ratio, in accordance with the definition of the critical
state.

The set of parameters in Table 1, which can be directly determined from the experimental curves, has the
advantage of being commonly used in the soil mechanics community: elastic stiffness, friction angle and
critical state parameters.

Fig. 5 presents a set of measured stress–strain behaviors showing the influence of the initial void ratio.
The representation of the curves obtained by Biarez and Hicher (2002) from a comparison of results on
different sands at different initial void ratios. They show the correspondence between the stress–strain curve
and the volumetric change for contactant and dilatant materials. Fig. 6 presents a set of numerical results
obtained with the set of parameters from Table 1 with different initial void ratios, corresponding to relative
densities between 0.05 and 1. Both stress–strain relations and volume changes are in agreement with the
experimentally measured curves in Fig. 5.
Table 1
Model parameters for coarse Hostun sand
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Fig. 4. Model predictions: (a) stress vs. strain curves, and (b) void ratio vs. strain curves.
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3.2. Undrained triaxial tests

Undrained triaxial tests have also been simulated, under the same set of parameters. The experimental
results are plotted in Fig. 7 compared with the predicted results in Fig. 8. One can see that for strongly
contractive materials, i.e. small values of the relative density, a maximum strength is obtained in the q–
e1 plane followed by a decrease of the deviatoric stress down to a minimum strength which is almost zero
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Fig. 7. Experimental results for undrained triaxial tests: (a) stress–strain curves, and (b) stress paths (Bouvards).
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for a relative density close to zero. This represents the phenomenon called static liquefaction. For slightly
higher relative densities, the same pattern is first observed but it is then followed by an increase of the devi-
atoric stress up to the ultimate strength at large deformations, corresponding to the critical state. For dilat-
ant materials, the deviatoric stress increases monotonically up to an ultimate stress achieved at large
deformations when the critical state is reached. These different evolutions can be related to the stress paths
followed in a p 0, q plane: continuous decrease of the mean effective stress for strongly contractant materials,
decrease followed by an increase up to the critical state for dilatant materials. These results indicate that in
undrained condition also, the model is capable of capturing the general trend observed for contractive and
dilative sands (Hicher, 1998).

3.3. Inherent anisotropy

One of the main interests of the model is its capacity to take into account a structural anisotropy. In fact,
the decomposition of the constitutive equations along a set of planes allows to formulate the dependency of
the parameters with respect to the orientation. If we do so, we can obtain a response which depends on the
loading orientation in relation to the direction of material anisotropy. Several studies have demonstrated
the influence of inherent anisotropy on the mechanical response of sands. When prepared in the gravita-
tional field, granular materials may have a packing structure anisotropy even for spherical grains. The
anisotropy can be characterized by a fabric tensor, defined by
F ij½ � ¼
F 11 0 0

0 F 22 0

0 0 F 33

2
64

3
75 ¼ F ave

1þ a0 0 0

0 1� a0
2

0

0 0 1� a0
2

2
6664

3
7775 ð19Þ
where Fave = (F11 + F22 + F33)/3 and a0 is the parameter showing the degree of anisotropy. It was found
(see Chang and Misra, 1990) that the tensor in Eq. (19) matches the continuous function given below:
F ðc; bÞ ¼ F ave

4p
1þ a0

4
ð3 cos 2cþ 1Þ

� �
ð20Þ
where F is a variable function of the orientation defined by the two angles c, b in a spherical coordinates
(see Fig. 1). In the case of symmetry around the major axis, F is only a function of c. Eq. (20) is a truncated
form of the spherical harmonic expansion up to second-order terms. An example of the function F with
different values of a0 is shown in Fig. 9.

For a soil layer, the inherent anisotropy in Eq. (20) represents a distribution function, which has sym-
metry about its major axis that often coincides with the vertical direction. The anisotropy of the packing
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Fig. 9. Schematic plot for inherited anisotropy.
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structure creates an anisotropy of the mechanical behavior whose directions are identical to those of the
geometric anisotropy. Several studies have shown that the stress–strain behavior reflects the inherent aniso-
tropic fabric in sand specimens. It has been found that the stiffness is larger when the direction of the major
principal stress coincides with the principal direction of fabric tensor. For sands prepared by pluviation in-
side a mould, the stress–strain curve presents a stiffer slope when the major principal stress is applied per-
pendicular to the bedding plane and, on the contrary, a lower slope when the major principal stress is
applied in the direction of the bedding plane.

Results of this sort were presented by Ochai and Lade (1983) on Cambria sand (long grains) prepared by
pouring vertically and shaking sand grains into a tilted mould. The cube in Fig. 10 represents a specimen;
the shaded plane is the plane of pluviation. The specimen is cross anisotropic. Properties in directions 2 and
3 are the same, but different from that in direction 1. The principal material axis for the specimen is per-
pendicular to the plane of pluviation. Photographs were taken of horizontal and vertical sections through
central regions of the specimen. Measurements of grain orientation were made and reported on a rose dia-
gram (Fig. 10). They showed that the grains had distinctly preferred orientations in the vertical section, but
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random orientations in the horizontal section. Grain shape is characterized by the length of its three axes,
L, H, and W. The distribution of L/H and L/W are also plotted in Fig. 10. The average ratio of the major
length to the minor length is 1.8. Because the present model does not explicitly consider the factor of grain
shape, in this simulation, the anisotropy due to grain shape is reflected on the parameters, Nl3/V, kp0/kn0,
and /l, as described in the subsequent paragraphs.

Triaxial compression tests were performed on Cambria sand specimen prepared as described above and
loaded in two different ways: (1) coaxial loading and (2) non-coaxial loading, as shown in Fig. 11. In the
first case, the loading direction coincides with the principal material axis. In the second case, they are per-
pendicular. The measured results presented in Fig. 12 for various confining pressures show clear differences
according to the direction of loading. The curves tend to approach each other at large strains, even if the
authors reported slight differences in peak friction angles, varying from 2� for r3 = 50kPa to 0.5� for
r3 = 400kPa.

In order for the model to be able to reflect the initial anisotropy of the specimen, the values of the param-
eters representing the behavior at the micro-scale were made to depend on the orientation of the selected
planes. In this case, a cross-anisotropy can be assumed around an axis of symmetry corresponding to the
vertical direction.

The mean particle diameter is 0.15mm. The inter-particle elastic constant kn0 is assumed to be 20500N/
mm. The initial void ratio of the specimens was 0.53–0.54. In this range of void ratio, the contact density
Nl3/V is assumed to be 2.5. According to the rose diagram for the grain orientation in Fig. 10, it is expected
Noncoaxial
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2

Fig. 11. Coaxial and non-coaxial loading conditions.
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that the distribution of Nl3/V is symmetric about the vertical axis. Its degree of anisotropy is estimated to be
0.2. Typical value of kt0kn0 = 0.5 and the exponent n = 0.5 were considered.

For a packing of non-spherical particles, it is not sufficient to specify only the anisotropy a0 on the con-
tact number, because other factors such as contact area and grain shape also contribute to the material
anisotropy. In addition, in this simulation, we applied anisotropy directly to the plastic–elastic stiffness ra-
tio kp0/kn0 and the friction angle /l. The observed anisotropic mechanical behavior can be predicted rea-
sonably well by imposing orientational dependency on the following three inter-particle parameters.

(1) The average contact density Nl3/V = 2.5 with a degree of anisotropy ða0Þkn ¼ 0:2
(2) The average ratio of kp0/kn0 = 0.43 with a degree of anisotropy ða0Þkp0=kn0 ¼ 1:32
(3) The average /l = 41.30 with a degree of anisotropy ða0Þ/l

¼ 0:45

Mean values and degrees of anisotropy of the parameters were determined by curve fitting, using the
experimental results obtained from the triaxial tests at r3 = 0.2MPa for vertical and horizontal loading.

Since the results presented in the paper were not sufficient for determining the critical state for Cambria
sand, usual values for this type of sand were assumed (Biarez and Hicher, 1994). The parameter values are
presented in Table 2. They were determined from the two triaxial tests at r3 = 200kPa. The value of m was
determined from the evolution of the peak friction angle with the confining pressure.

The results of the numerical simulations are presented in Fig. 13. They are in good agreement with the
experimental results in Fig. 12. The general trend is well captured by the model. Specimen appear stiffer
when the compressive stress is applied in the direction of deposition. The volumetric strain behavior also
reflects the initial anisotropy. The specimen loaded in a vertical direction exhibit a smaller amount of com-
pression and larger rates of dilation than those loaded in a horizontal direction, as can also be observed on
the experimental curves.
Table 2
Parameters for cross-anisotropic Cambria sand

eref pref (MPa) k /0 (�) m

0.83 0.1 0.05 32 0.05
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Fig. 13. Model predictions: (a) stress–strain curves, and (b) volumetric strain vs. axial strain curves.
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Since the sample is cross isotropic, under the loading in direction 1, the normal strain in directions 2 and
3 are the same for the coaxial case but different for the non-coaxial loading case. The strains are plotted in
Fig. 14 for the case of r3 = 0.2MPa. In the non-coaxial loading case, the strain in direction 2 is larger than
that in direction 3.

In order to have insights on the deformation behavior between particles, we examined the particles ori-
ented in four directions as the branch vectors shown in Fig. 15. The branch vectors are located on the 1–3
plane of the coordinate system. The angle c is measured between the 1-axis and the branch vector. We se-
lected four values of c = 0, 18, 45, 72 degrees. Fig. 16 shows the evolution of normal and shear stresses with
shear strain on the four planes. Local strains and stresses (see definitions in Appendix B) rather than inter-
particle forces and displacements were plotted in order to obtain a more direct comparison between the
local behavior and the overall stress–strain behavior. On plane ‘‘d’’, perpendicular to the loading direction,
the shear traction is zero. Fig. 16 shows that plane ‘‘c’’ is mobilized to about 1%, then the movement is
stopped. Plane ‘‘a’’ continues to be mobilized to about 3.5% and plane ‘‘a’’ continues all the way to the
end of test. This indicates that in the beginning of loading, all planes are mobilized. Some planes stopped
to mobilize as the loading increases. Further deformation is obtained by the mobilization of remaining
planes. The total number of mobilizable planes continues to decrease. At peak stress, most planes stopped
moving. Only a few remaining planes are responsible for the deformation.

Fig. 16 also shows the normal strain versus shear strain for each plane. Plane ‘‘d’’ experiences only nor-
mal strain without shear. Plane ‘‘c’’ experiences shear contraction while planes ‘‘a’’ and ‘‘b’’ experience
shear dilation. The difference between coaxial and non-coaxial loading is quite pronounced in the local
behavior.
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Fig. 15. Four inter-particle orientations located on the X1–X3 plane of the coordinate system.
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To evaluate the evolution of strain heterogeneity predicted in this model, we selected three load stages to
observe the orientational distributions of local stress and local strain. For the triaxial test
(r3 = r2 = 0.2MPa) with coaxial loading case, the stresses r1 for the three selected stages are 0.60, 0.70,
and 0.75MPa. The static hypothesis is used to determine the normal stresses on the planes of various ori-
entations on the 1–3 plane, which are plotted in Fig. 17 for the three load stages marked as a, b, and c. It
verifies that the predicted local stresses are identical to that of static hypothesis adopted in this model. The
predicted local strains on planes of various orientations are plotted in Fig. 18 for the three load stages.
Compared with the local strains based on the kinematic hypothesis, it is obvious that the predicted local
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strains are highly heterogeneous and do not conform to an uniform state of strain. The current model
shows that the normal strains are much smaller than that obtained from kinematic hypothesis and the shear
strains are much larger in certain orientations. The predicted qualitative behavior is in agreement with the
experimental measurements from computer tomography (Chang et al., 2003).
4. Summary and conclusion

The microstructural approach is attractive conceptually, because it dispenses in having to deal with rela-
tions between the stress and strain tensors. Rather, we need to describe only a simple relation between the
vectors of forces and relative displacements on a contact plane, which thus requires fewer material para-
meters. The stress and strain tensors are automatically obtained by integration over all spatial orientations.
Aside from modeling simplicity, the microstructural approach is more realistic, especially for the stress-
induced or inherent anisotropy. Furthermore it can capture the slip deformation on each plane, thus devel-
oping automatically the anisotropy induced from stress application.

In the model, a simple elastic–plastic behavior was assumed on each contact plane. The elastic part is
based on the Hertz–Mindlin�s contact formulation, while the plastic part is based on a Mohr–Coulomb fric-
tion law with an isotropic hardening assumption and a non-associated flow rule. For the whole packing, a
critical state behavior is assumed at large deformations and the friction angle on each plane is related to the
actual void ratio compared to the critical void ratio at the same state of stress. A strain softening behavior
can therefore be obtained for dense materials. On the whole, the model requires a limited number of param-
eters, which can easily be determined from conventional triaxial testing.

The ability of the model to reproduce the main features of the sand behavior has been demonstrated.
Model simulations were compared with drained triaxial tests results at different initial void ratios and dif-
ferent confining stresses leading to contractant or dilatant behavior of the sand specimens. A good accuracy
was obtained between numerical simulations and experimental results, by use of a unique set of parameters.
Simulations of undrained triaxial tests with the same set of parameters demonstrated that the model is
capable of reproducing the general trend for both loose and sense sands.

An inherent anisotropy can easily be introduced by giving an orientation dependency to the parameters.
In the examples presented, the inherent anisotropy of deposited sand was reproduced by making the inter-
particle stiffness as well as the friction angle cross-anisotropic. In this way, the model was able to reproduce
the differences observed in the stress–strain relationship and the volume change during drained triaxial
loading in vertical and horizontal directions.
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Appendix A

Follow the consistency equation, dF = 0, which yield
dF ¼ oF
ofi

dfi þ
oF
oj

oj
odpi

ddpi ¼ 0 ðA:1Þ
For the specific yield function given in Eqs. (7) and (A.1) can be expressed as
dF ¼ oF
ofi

dfi �
oj
oDp

oDp

odpi
ddpi ¼ 0 ðA:2Þ
The derivatives in Eq. (A.2) can be obtained from the definition of F, j and Dp previously defined. The
plastic shear displacement is obtained in accordance with the associated flow rule (i.e. ddpj ¼ k oF

ofj
) and the

plastic normal displacement is obtained by dilatancy equation (5). The three components can be related to
the scalar plastic displacement dDp, which is defined in Eq. (6). We define the plastic flow vector ni such that
ddpj ¼ Dpnj ðA:3Þ
Or in vector form,
ddpn
ddps
ddpt

8><
>:

9>=
>; ¼ dDp

T=f � tan/l

fs=T

ft=T

8><
>:

9>=
>; ðA:4Þ
The displacement is assumed to consist of elastic component and plastic component. The force can be
calculated from the elastic component by
dfi ¼ keijðddj � ddpj Þ ðA:5Þ
Substitute Eq. (A.5) into Eq. (A.1), then using Eq. (A.4), we obtain
k ¼

oF
ofi

keijddj

oF
ofi

keijnj þ
oj
oDp

oDp

odpj
nj

ðA:6Þ
Substitute Eq. (A.6) into Eq. (A.5), the incremental force–displacement relationship for two particles un-
der sliding can be expressed as
dfi ¼ kepij ddj ðA:7Þ
where
kepij ¼ keij �
kein

oF
ofn

nmk
e
mj

oF
ofm

kemnnn þ
oj
oDp

oDp

odpm
nm

ðA:8Þ
Appendix B

Considering the system as a set of mobilized planes and using the variables of local traction si and local
strain ci for each plane. For a unit volume, the work due to virtual displacement is given by
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1

V

X
a

f a
j Dd

a
j ¼

1

N

X
a

sajDc
a
j ðB:1Þ
N is the total number of orientations considered (i.e., a is summed from 1 to N). Note that the local
strain can be related to the relative displacement between two particles by Dcaj ¼ Ddaj=l

a, thus the traction
is related to inter-particle force by
saj ¼
N
V
f a
j l

a: ðB:2Þ
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